If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-72x-42=0
a = 6; b = -72; c = -42;
Δ = b2-4ac
Δ = -722-4·6·(-42)
Δ = 6192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6192}=\sqrt{144*43}=\sqrt{144}*\sqrt{43}=12\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-12\sqrt{43}}{2*6}=\frac{72-12\sqrt{43}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+12\sqrt{43}}{2*6}=\frac{72+12\sqrt{43}}{12} $
| -1.7-3x=2.8 | | 39x+73=360 | | 16x-5=10×-35 | | x-4/7+4/7=x/2 | | -3(y+9)=-4y | | 4^2x+1=8 | | x^2/10x=0 | | 24x+120=260 | | -x^2/9=0 | | 5/7(3x+2)=4 | | 4x+20=74-2x | | 3v+15v+-6v=12 | | 4-12=a | | P(x)=2x^2-5x-2 | | -5w-7w-6w+14w=-16 | | 5/6x+90=440 | | 3x+1-x=11 | | 4(2a-3)=-(4a-15+9) | | 16-8a^2=0 | | 5k-3k=2 | | 7-(2a+3)=12 | | 3+3x=22+2x | | 2x+8+12(8x−5)=−12 | | 7a+4a-3=0 | | 3x2-21=0 | | 2v+13=45 | | 6x+50=542 | | 3w+w=16 | | F(x)=72-12x | | 2|a|-5=13 | | x/2-(1/4)(x-1/2)=1/6(2x+1)+1/3 | | (1/8)(8t-7)=t+(7/16) |